Asymptotic Enumeration of Tournaments with a Given Score Sequence
نویسندگان
چکیده
A tournament is a digraph in which, for each pair of distinct vertices v and w, either (v,w) or (w, v) is an edge, but not both. A tournament is regular if the in-degree is equal to the out-degree at each vertex. Let v1, v2, . . . , vn be the vertices of a labelled tournament and let d−j , d + j be the in-degree and out-degree of vj for 1 ≤ j ≤ n. d+j is also called the score of vj . Define δj = d + j − d−j and call δ1, δ2, . . . , δn the excess sequence of the tournament. Let NT (n; δ1, . . . , δn) be the number of labelled tournaments with n vertices and excess sequence δ1, . . . , δn. It is clear that NT (n; δ1, . . . , δn) = 0 unless all the excesses have different parity from n; we will assume this without further mention for the entire paper. As in [3], let RT (n) = NT (n; 0, . . . , 0) be the number of labelled regular tournaments with n vertices. The first attack that we are aware of on the asymptotics of tournaments was due to Joel Spencer [6]. In particular, Spencer evaluated RT (n) to within a factor of (1 + o(1)) and obtained the estimate
منابع مشابه
Calculating the Frequency of Tournament Score Sequences
We indicate how to calculate the number of round-robin tournaments realizing a given score sequence. This is obtained by inductively calculating the number of tournaments realizing a score function. Tables up to 18 participants are obtained. 1. Tournaments and score sequences A (round-robin) tournament on a set P of n vertices (participants, teams, . . . ) is a directed graph obtained by orient...
متن کاملA remark on asymptotic enumeration of highest weights in tensor powers of a representation
We consider the semigroup $S$ of highest weights appearing in tensor powers $V^{otimes k}$ of a finite dimensional representation $V$ of a connected reductive group. We describe the cone generated by $S$ as the cone over the weight polytope of $V$ intersected with the positive Weyl chamber. From this we get a description for the asymptotic of the number of highest weights appearing in $V^{otime...
متن کاملAsymptotic enumeration by degree sequence of graphs with degress o(n1/2)
We determine the asymptotic number of labelled graphs with a given degree sequence for the case where the maximum degree is o(|E(G)|). The previously best enumeration, by the first author, required maximum degree o(|E(G)|). In particular, if k = o(n), the number of regular graphs of degree k and order n is asymptotically (nk)! (nk/2)! 2nk/2(k!)n exp ( − 2 − 1 4 − k 3 12n + O(k/n) ) . Under slig...
متن کاملAsymptotic Enumeration of Eulerian Circuits in the Complete Graph
We determine the asymptotic behaviour of the number of eulerian circuits in a complete graph of odd order. One corollary of our result is the following. If a maximum random walk, constrained to use each edge at most once, is taken on Kn, then the probability that all the edges are eventually used is asymptotic to en. Some similar results are obtained about eulerian circuits and spanning trees i...
متن کاملAsymptotic enumeration of sparse uniform hypergraphs with given degrees
Let r ≥ 2 be a fixed integer. For infinitely many n, let k = (k1, . . . , kn) be a vector of nonnegative integers such that their sum M is divisible by r. We present an asymptotic enumeration formula for simple r-uniform hypergraphs with degree sequence k. (Here “simple” means that all edges are distinct and no edge contains a repeated vertex.) Our formula holds whenever the maximum degree kmax...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Random Struct. Algorithms
دوره 16 شماره
صفحات -
تاریخ انتشار 1996